Slide 1: How are the pattern blocks different? How are they the same?

Slide 3: Can you <u>write a fraction</u> that describes what you see in each set of pattern blocks?

Slide 5: How can you compare the size of a fraction?

- What do you look at when comparing size?
- What would you count when comparing size?

Slide 7: How you would decide which of two fractions is greater?

- How many equal parts?
- How many equal parts do you count?

Slide 9: Is there <u>another way</u> to <u>describe the size</u> of a fraction?

• How could you describe how many equal parts you have without saying "equal parts"?

Slide 11: How would you <u>compare</u> these two fractions <u>without using a picture or</u> <u>model</u>?

3	4
5	5

Slide 13: Are there other ways to compare the size of each fraction?

$$\frac{3}{5}$$
 $\frac{4}{5}$

Slide 15: How would you write a true statement using the symbols < and >?

4	6
	_
7	7

Slide 17: Imagine we each have a pizza. I eat $\frac{4}{7}$ of my pizza and you eat $\frac{6}{7}$ of your pizza.

Q: How could you describe <u>how much more</u> pizza you ate? Q: Can you write your answer as a fraction?

Slide 19: How would you write a true statement using the symbols < and > and the words "equal parts"?

7	3
-	
8	8

Slide 21: How would you write a true statement using the symbols < and > and the word "eighths"?

7	3
8	8

Slide 23: Imagine we each have a soda pop with our pizza. I drink $\frac{7}{8}$ of my pop and you drink $\frac{3}{8}$ of your pop.

Q: <u>How much more</u> did I drink? Q: Can you write your answer as a fraction? ☑ I can write a fraction to describe a model of pattern blocks
☑ I can compare the size of fractions using the words ... whole... equal parts
☑ I can compare the size of fractions using fraction words ... halves... thirds... fourths... fifths... sixths... sevenths... eighths