
Linear Relations - Vertical Lines

In the previous tutorial, we constructed a graph from the equation of a *linear* relation. In this tutorial, we'll continue to explore and graph various forms of an equation for a *linear relation*.

Let's begin by reviewing what we already understand about the equation and graph shown below.

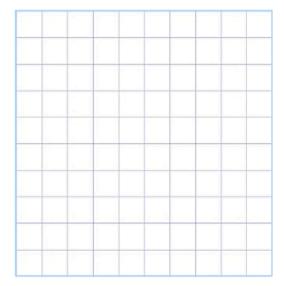
 I'll begin by focusing on the equation itself... How would I describe the look of this equation?

- How might the look of this equation help me explain how the two variables, x and y, are related?
- For this equation... *y* is a function of *x*. How would I explain the meaning of this statement?

In preparing to graph this equation, I'll need to construct a table of values. Here is a sample set of values recorded in the left-hand column of the table.

- What do I know about these values?
- How would I explain these values?
- How would I describe or explain the information that I'll record in the column on the right-hand side of the table?

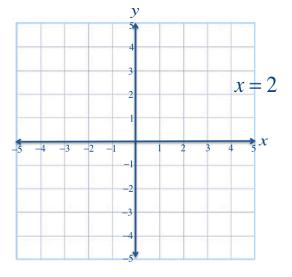
\mathcal{X}	y
0	
1 /	
2	
3	



\mathcal{X}	y	
0		
1		
2		
3		

• How could I use the coordinate values shown in my table to illustrate why the *relation* represented by the equation is *linear*?

How would I explain and demonstrate using the coordinate values in my table to determine locations/points on my graph?



How do I know the points I plotted to construct my graph illustrate that the equation represents *linear relation*?

Let's consider a new equation... x=2

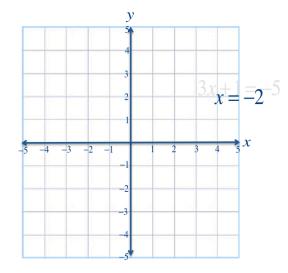
- How would I describe this new equation as being different to the previous example y=3x-5?
- Based on the look of this equation, what prediction can I make about the location of any point used to graph this equation?

- If each point on my graph has the *x-coordinate 2...* how would I describe the look of this graph?
- Does my new graph verify that the equation x=2 represents a *linear* relation? How would I justify my answer?
- Does the statement... *y* is a function of *x* apply to my new graph? How would I justify my answer?

Let's consider another example of an equation representing a *linear relation*.

$$3x + 1 = -5$$

• How would I describe this equation as being different/same compared to the previous example *x*=2?


My first step in preparing to graph this equation will require me to <u>solve for the</u> variable.

- How would I explain the statement... solve for the variable?
- What am I being asked to do when... solving for the variable?
- How would I explain and demonstrate my thinking as I solve for the variable in this equation?

$$3x + 1 = -5$$

Having <u>solved for the variable</u>, my next step in preparing to graph the equation will be to create a table of values.

• What do I need to understand when creating this table?

 Why is creating a table of values an important step in preparing to graph my equation?

• How would I summarize my thinking when constructing a graph using my table of values?

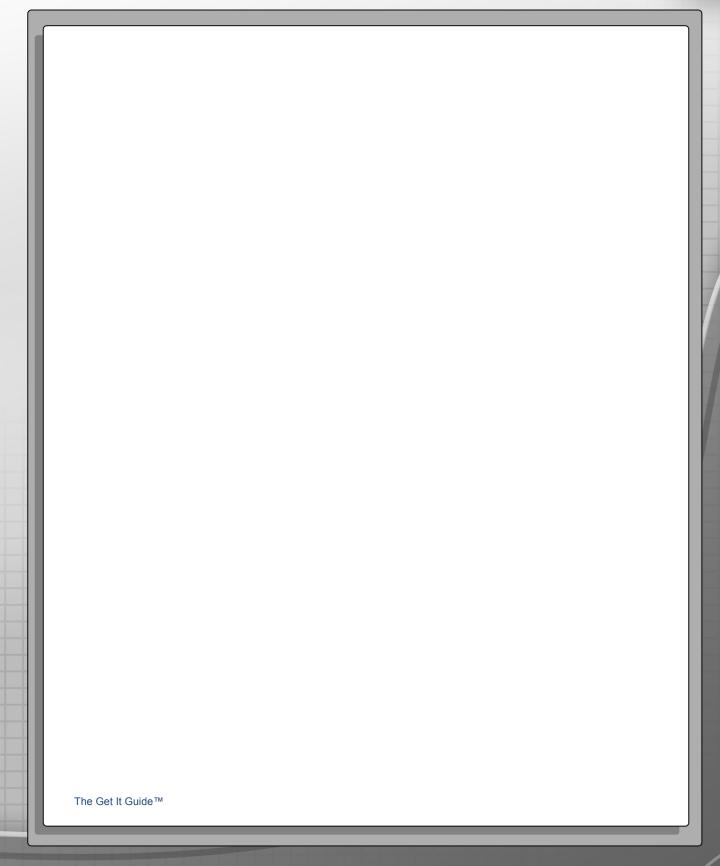
Linear Relations-Vertical Lines-Skills Checklist

☑I can compare/describe the following forms of an equation representing a linear relation... y=3x-5, x=2, 3x+1=-5

☑I can explain and demonstrate how I create a table of values using each form of an equation... y=3x-5, x=2, 3x+1=-5

☑I can explain and demonstrate how I would isolate and determine the value of the variable in the equation 3x+1=-5

☑I can explain and demonstrate using a table of values to plot points/locations on a graph VI can use a graph to verify that an equation represents a linear relation


I can use these terms in

Independent Var

Dependent Variable

Input

Linear Relations-Vertical Lines-Worksheet

