Adding Fractions with Common Denominators

A student has solved the addition problem shown below.

• How would I walk someone through this solution and explain the thinking that occurred?

 Calculate the sum.					
3	5	3+5	8		
12	12	12	12		

The student completes the solution by writing their answer in simplest form.

• How would I explain writing a fraction in simplest form?

• How do I determine if a fraction can be simplified, or, if it's already in simplest form?

Calcula	ate the su	m			
$\frac{3}{12}$	$+\frac{5}{12}$	$=\frac{3+5}{12}$	$=\frac{8}{12}$		
Write answer in simplest form,					
	8	2			
	12	= -3			

Adding Fractions with Common Denominators

Which statements do I feel confident explaining and demonstrating? Which statements do I <u>not</u> feel confident explaining and demonstrating?

I can <u>explain</u> a fraction amount using the terms numerator, denominator, equal parts and whole amount
I can <u>draw</u> a fraction strip to <u>represent</u> a fraction amount
I can <u>explain</u> and <u>demonstrate</u> how I use fraction strips to <u>illustrate</u> why I can <u>explain</u> and <u>demonstrate</u> how I write a fraction in simplest form/lowest terms in simplest form/lowest terms

