Exponent Law for a Power of a Quotient

The base of a power may be a quotient.

- How would I define the word quotient using the expression shown here?
- How would I explain why this expression is a power of a quotient?

$$
\left(\frac{5}{6}\right)^{3}
$$

- How would I explain the power of a quotient shown here using repeated multiplication?

My repeated multiplication involves fractions.

- How would I explain multiplying fractions?

$$
\left(\frac{5}{6}\right)^{3}=\left(\frac{5}{6}\right) \times\left(\frac{5}{6}\right) \times\left(\frac{5}{6}\right)=\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6}
$$

- How would I explain and demonstrate writing my repeated multiplications as powers?

$$
\left(\frac{5}{6}\right)^{3}=\left(\frac{5}{6}\right) \times\left(\frac{5}{6}\right) \times\left(\frac{5}{6}\right)=\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6}
$$

- How would I use my previous solution to explain the exponent law for a power of a quotient?

$$
\begin{aligned}
\left(\frac{5}{6}\right)^{3}=\left(\frac{5}{6}\right) \times\left(\frac{5}{6}\right) \times\left(\frac{5}{6}\right) & =\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \\
& =\frac{5 \times 5 \times 5}{6 \times 6 \times 6} \\
& =\frac{5^{3}}{6^{3}}
\end{aligned}
$$

- How would I describe my expression after distributing the exponent?
- How would I explain and demonstrate writing this expression as a quotient of powers?
- How would I explain and demonstrate writing this expression as a quotient of powers?
- How would I explain evaluating this expression using the exponent law for a power of a quotient?
- How would I explain evaluating this expression using the order of operations?

Exponent Law for a Power of a Quotient

Which statements do I feel confident explaining and demonstrating?
Which statements do I not feel confident explaining and demonstrating?
$\checkmark 1$ can explain the term quotient \checkmark can explain different ways to represent division
$\checkmark 1$ can demonstrate how 1 evaluate a
power and explain an expression
$\checkmark 1$ can write and a quotient
that is a Power of a law for a Power of a quotient $\checkmark 1$ can con
quotient of powers
$\checkmark 1$ can evaluate an expreser of a quotient

* The exponent law for a

